Skip to main content\(\newcommand{\R}{\mathbb R}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 1.3 General solutions
Example 1.3.1.
Find the general solution of a linear system
\begin{align*}
3x_2-6x_3+6x_4+4x_5\amp=-5\\
3x_1-7x_2+8x_3-5x_4+8x_5\amp=9\\
3x_1-9x_2+12x_3-9x_4+6x_5\amp=15
\end{align*}
The matrix \(C\) can be interpreted as
\begin{align*}
x_1-2x_3+3x_4\amp=-24\\
x_2-2x_3+2x_4\amp=-7\\
x_5\amp=4
\end{align*}
The general solution can be written as
\begin{align*}
x_1\amp=-24+2x_3-3x_4\\
x_2\amp=-7+2x_3-2x_4\\
x_5\amp=4
\end{align*}
The general solution is:
\begin{equation*}
\left[\begin{array}{r}
x_1 \\
x_2\\
x_3\\
x_4\\
x_5
\end{array}\right]=\left[\begin{array}{c}
-24+2x_3-3x_4\\
-7+2x_3-2x_4\\
x_3\\
x_4\\
4
\end{array}\right]=\left[\begin{array}{c}
-24\\
-7\\
0\\
0\\
4
\end{array}\right]+x_3\left[\begin{array}{c}
2\\
2\\
1\\
0\\
0
\end{array}\right]+x_4\left[\begin{array}{c}
-3\\
-2\\
0\\
1\\
0
\end{array}\right]
\end{equation*}