Skip to main content\(\newcommand{\R}{\mathbb R}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 2 Matrix Operations
Given a system of linear equations, say
\begin{align*}
3y+4z\amp=11\\
3x-7y+4z\amp=4\\
3x-9y+6z\amp= 6.
\end{align*}
One can write it as matrix form \(A\mathbf{x}=\mathbf{b}\text{,}\)
\begin{equation*}
\begin{pmatrix}
0 \amp 3 \amp 4 \\
3 \amp -7 \amp 4\\
3 \amp -9 \amp 6
\end{pmatrix}\begin{pmatrix}
x\\
y\\
z
\end{pmatrix}=\begin{pmatrix}
11\\
4\\
6
\end{pmatrix}
\end{equation*}
Here is the procedure to solve the linear system.
Augmented matrix.
\begin{equation*}
\begin{pmatrix}
0 \amp 3 \amp 4 \amp 11 \\
3 \amp -7 \amp 4 \amp 4 \\
3 \amp -9 \amp 6 \amp 6
\end{pmatrix}
\end{equation*}
the reduced echelon form, using rref
.
Which can be interpret as the augmented matrix of another equivalent linear system, that is,
\begin{align*}
x \amp \amp \amp \amp \amp=1\\
\amp \amp y\amp \amp\amp=1\\
\amp\amp \amp \amp z\amp= 2.
\end{align*}
Objectives