Skip to main content

Section 6.2 The Kernel and range of \(T\)

Definitions of kernel and range.

Let \(T\) be a linear transformation from \(V\) to \(W\text{.}\)
  • Kernel of \(T:\)
    \begin{equation*} \operatorname{ker}(T)=\{v\in V|T(v)=\mathbf{0}_W\}. \end{equation*}
  • Range of \(T:\)
    \begin{align*} \operatorname{ran}(T)=\amp\{T(v)|v\in V\} \\ =\amp\{w\in W|\exists v\in V\text{ such that } w=T(v)\} \end{align*}
For the rest of this section, we assume that \(T:\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}.\) Recall that \(\forall v\in V\text{,}\)
\begin{equation*} T(v)=Av\text{,} \end{equation*}
where \(A=\Big[T(\mathbf{e}_1)\, T(\mathbf{e}_2)\,\ldots\, T(\mathbf{e}_n)\Big]\text{.}\)

Proof.

  1. \(\forall v\in \operatorname{ker}(T), T(v)=\mathbf{0}.\) It follows from \(T(v)=Av\) that \(Av=\mathbf{0}.\) Thus \(v\in \operatorname{Nullspace}(A).\) Therefore \(\operatorname{ker}(T)\subseteq \operatorname{Nullspace}(A).\)
    \(\forall v\in \operatorname{Nullspace}(A), \) \(Av=\mathbf{0}\) it follows from \(T(v)=Av\) that \(T(v)=\mathbf{0}.\) Thus \(v\in \operatorname{Ker}(T).\) Therefore \(\operatorname{Nullspace}(A)\subseteq \operatorname{ker}(T).\)
    Therefore, \(\operatorname{ker}(T)=\operatorname{Nullspace}(A).\)
It follows from Theorem 6.2.2 that the kernel and range of \(T\) is related closely with the standard matrix \(A\text{.}\)