Skip to main content

Section 7.3 Orthogonally Diagonalization

Objective.

Orthogonally diagonalize the symmetric matrix
\begin{equation*} A = \begin{pmatrix} 5 \amp -8 \amp 4 \\ -8 \amp 5 \amp -4 \\ 4 \amp -4 \amp -1 \end{pmatrix} \end{equation*}
  1. Find the eigenvalues and the corresponding eigenvectors.
  2. Let \(v_{1}=[1,-1,1/2], v_{2}=[1,0,-2]\) and \(v_{3}=[0,1,2]-\frac{[0,1,2]\cdot [1,0,-2]}{[1,0,-2]\cdot [1,0,-2]}[1,0,-2]=\left(\frac{4}{5},\,1,\,\frac{2}{5}\right)\)
    You must know why we are doing it in such way!
  3. Let \(u_{i}=\frac{u_{i}}{\|u_{i}\|}\text{.}\)
  4. Let
    \begin{equation*} P=[u_{1}\ u_{2} \ u_{3}]= \begin{pmatrix} \frac{2}{3} \amp -\frac{2}{3} \amp \frac{1}{3} \\ \frac{\sqrt{5}}{5} \amp 0 \amp -\frac{2\sqrt{5}}{5} \, \\ \frac{4\sqrt{5}}{15} \amp \frac{\sqrt{5}}{3} \amp \frac{2\sqrt{5}}{15} \end{pmatrix} \end{equation*}
  5. \(\displaystyle P^{-1}AP=P^{T}AP=\left(\begin{array}{rrr} 15 \amp 0 \amp 0 \\ 0 \amp -3 \amp 0 \\ 0 \amp 0 \amp -3 \end{array}\right)\)
There is a serious mistake. Please fix it!
Exercise: Orthogonally diagonalize the sym metric matrix
\begin{equation*} A=\left(\begin{array}{rrrr} 1 \amp -2 \amp 0 \amp 0 \\ -2 \amp 1 \amp 0 \amp 0 \\ 0 \amp 0 \amp 1 \amp -2 \\ 0 \amp 0 \amp -2 \amp 1 \end{array}\right) \end{equation*}