Skip to main content Contents
Prev Up Next \(\newcommand{\R}{\mathbb R}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 7.3 Orthogonally Diagonalization
Objective.
Orthogonally diagonalize the symmetric matrix
\begin{equation*}
A = \begin{pmatrix}
5 \amp -8 \amp 4 \\
-8 \amp 5 \amp -4 \\
4 \amp -4 \amp -1
\end{pmatrix}
\end{equation*}
Find the eigenvalues and the corresponding eigenvectors.
Let \(v_{1}=[1,-1,1/2], v_{2}=[1,0,-2]\) and \(v_{3}=[0,1,2]-\frac{[0,1,2]\cdot [1,0,-2]}{[1,0,-2]\cdot [1,0,-2]}[1,0,-2]=\left(\frac{4}{5},\,1,\,\frac{2}{5}\right)\)
You must know why we are doing it in such way!
Let \(u_{i}=\frac{u_{i}}{\|u_{i}\|}\text{.}\)
Let
\begin{equation*}
P=[u_{1}\ u_{2} \ u_{3}]=
\begin{pmatrix}
\frac{2}{3} \amp -\frac{2}{3} \amp \frac{1}{3} \\
\frac{\sqrt{5}}{5} \amp 0 \amp -\frac{2\sqrt{5}}{5} \, \\
\frac{4\sqrt{5}}{15} \amp \frac{\sqrt{5}}{3} \amp \frac{2\sqrt{5}}{15}
\end{pmatrix}
\end{equation*}
\(\displaystyle P^{-1}AP=P^{T}AP=\left(\begin{array}{rrr}
15 \amp 0 \amp 0 \\
0 \amp -3 \amp 0 \\
0 \amp 0 \amp -3
\end{array}\right)\)
There is a serious mistake. Please fix it!
Exercise: Orthogonally diagonalize the sym metric matrix
\begin{equation*}
A=\left(\begin{array}{rrrr}
1 \amp -2 \amp 0 \amp 0 \\
-2 \amp 1 \amp 0 \amp 0 \\
0 \amp 0 \amp 1 \amp -2 \\
0 \amp 0 \amp -2 \amp 1
\end{array}\right)
\end{equation*}