Given a matrix equation \(A\mathbf{x}=\mathbf{b}\text{,}\) where \(A\) is an \(n \times n\) matrix. Let \(A_i(\mathbf{b})\) be the matrix obtained from \(A\) by replacing column \(i\) by the vector \(\mathbf{b}\text{.}\)
Let \(A\) be an invertible \(n \times n\) matrix. For any \(\mathbf{b}\) in \(\mathbb{R}^n\text{,}\) the unique solution \(\mathbf{x}\) of \(A \mathbf{x}=\mathbf{b}\) has entries given by
\begin{equation*}
x_i=\frac{\operatorname{det} A_i(\mathbf{b})}{\operatorname{det} A}, \quad i=1,2, \ldots, n
\end{equation*}
Example3.2.2.
Use Cramer’s Rule to solve the system of linear equations.