设 \(x_{1}\) 和 \(x_{2}\) 为 \([a, b]\) 上任意两点, 且 \(x_{1}<x_{2}\text{,}\) 记 \(\frac{x_{1}+x_{2}}{2}=x_{0}\text{,}\) 并记 \(x_{2}-x_{0}=\) \(x_{0}-x_{1}=h\text{,}\)则 \(x_{1}=x_{0}-h, x_{2}=x_{0}+h\text{,}\) 由拉格朗日中值公式,得
\begin{equation*}
f\left(x_{0}+h\right)-f\left(x_{0}\right)=f^{\prime}\left(x_{0}+\theta_{1} h\right) h,
\end{equation*}
\begin{equation*}
f\left(x_{0}\right)-f\left(x_{0}-h\right)=f^{\prime}\left(x_{0}-\theta_{2} h\right) h,
\end{equation*}
其中 \(0<\theta_{1}<1,0<\theta_{2}<1\text{.}\) 两式相减, 即得
\begin{equation*}
f\left(x_{0}+h\right)+f\left(x_{0}-h\right)-2 f\left(x_{0}\right)=\left[f^{\prime}\left(x_{0}+\theta_{1} h\right)-f^{\prime}\left(x_{0}-\theta_{2} h\right)\right] h .
\end{equation*}
对 \(f^{\prime}(x)\) 在区间 \(\left[x_{0}-\theta_{2} h, x_{0}+\theta_{1} h\right]\) 上再应用拉格朗日中值公式,得
\begin{equation*}
\left[f^{\prime}\left(x_{0}+\theta_{1} h\right)-f^{\prime}\left(x_{0}-\theta_{2} h\right)\right] h=f^{\prime \prime}(\xi)\left(\theta_{1}+\theta_{2}\right) h^{2},
\end{equation*}
其中
\(x_{0}-\theta_{2} h<\xi<x_{0}+\theta_{1} h\text{.}\) 按
Theorem 4.3.3 中(1) 的假设,
\(f^{\prime \prime}(\xi)>0\text{,}\) 故有 即
\begin{equation*}
\begin{gathered}
f\left(x_{0}+h\right)+f\left(x_{0}-h\right)-2 f\left(x_{0}\right)>0, \\
\frac{f\left(x_{0}+h\right)+f\left(x_{0}-h\right)}{2}>f\left(x_{0}\right), \\
\frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}>f\left(\frac{x_{1}+x_{2}}{2}\right) .
\end{gathered}
\end{equation*}