Subsection 6.4.1 定积分的换元法
根据牛顿-莱布尼茨公式可知, 要计算定积分只需求出被积函数的原函数. 但由于定积分是一个“和式” 的极限, 是一个常数, 而不定积分是原函数族, 它们是完全不同的两个概念. 虽然通过牛顿-莱布尼茨公式给出它们的联系, 但它们毕竟有自己的特性,这些特性在计算上必然有所反映. 下面介绍定积分的换元法,要注意它和不定积分换元法的异同之处.
Theorem 6.4.1.
定理 若函数 \(f(x)\) 在区间 \([a, b]\) 上连续, 且函数 \(x=\varphi(t)\) 满足:
\(\varphi(\alpha)=a, \varphi(\beta)=b\text{;}\)
\(\varphi(t)\) 在区间 \([\alpha, \beta]\) (或 \([\beta, \alpha]\) ) 上具有连续导数, 且其值域 \(W(\varphi) \subset\) \([a, b]\text{,}\) 则有
\begin{equation*}
\displaystyle \int_{a}^{b} f(x) \mathrm{d} x=\displaystyle \int_{\alpha}^{\beta} f[\varphi(t)] \varphi^{\prime}(t) \mathrm{d} t
\end{equation*}
Proof.
证 设 \(F(x)\) 是 \(f(x)\) 的一个原函数, 即 \(F^{\prime}(x)=f(x)\text{.}\) 根据复合函数的求导法则 \(F[\varphi(t)]\) 是 \(f[\varphi(t)] \varphi^{\prime}(t)\) 的原函数, 由牛顿-莱布尼茨公式得
\begin{equation*}
\displaystyle \int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a)
\end{equation*}
又
\begin{equation*}
\displaystyle \int_{\alpha}^{\beta} f[\varphi(t)] \varphi^{\prime}(t) \mathrm{d} t=F[\varphi(\beta)]-F[\varphi(\alpha)]=F(b)-F(a) .
\end{equation*}
于是
\begin{equation*}
\displaystyle \int_{a}^{b} f(x) \mathrm{d} x=\displaystyle \int_{\alpha}^{\beta} f[\varphi(t)] \varphi^{\prime}(t) \mathrm{d} t
\end{equation*}
可以看出, 定积分的换元法实质上是把不定积分的换元法推广到定积分中,两者不同之处在于, 定积分的换元法中被积函数进行换元时, 积分上、下限也要作相应的变换,因此对 \(t\) 求出原函数后,不必再变换到原来的变量 \(x\text{,}\) 只要对新的变量应用牛顿-莱布尼茨公式计算就行了.
Example 6.4.2.
例 1 求定积分 \(\displaystyle \int_{0}^{\ln 2} \sqrt{\mathrm{e}^{x}-1} \mathrm{~d} x\text{.}\)
Solution.
解 设 \(\sqrt{\mathrm{e}^{x}-1}=t\text{,}\) 于是有 \(x=\ln \left(1+t^{2}\right), t>0, \mathrm{~d} x=\frac{2 t}{1+t^{2}} \mathrm{~d} t\text{.}\)
当 \(x=0\) 时, \(t=0\text{;}\) 当 \(x=\ln 2\) 时, \(t=1\text{.}\)
\begin{equation*}
\begin{aligned}
\displaystyle \int_{0}^{\ln 2} \sqrt{\mathrm{e}^{x}-1} \mathrm{~d} x & =2 \displaystyle \int_{0}^{1} \frac{t^{2}}{1+t^{2}} \mathrm{~d} t=2 \displaystyle \int_{0}^{1}\left(1-\frac{1}{1+t^{2}}\right) \mathrm{d} t \\
& =2[t-\arctan t]_{0}^{1}=2(1-\arctan 1) \\
& =2-\frac{\pi}{2} .
\end{aligned}
\end{equation*}
Example 6.4.3.
例 2 设 \(f(x)\) 是以 \(T\) 为周期的连续函数, 证明对任意实数 \(a\) 都有 \(\displaystyle \int_{a}^{a+T} f(x) \mathrm{d} x=\displaystyle \int_{0}^{T} f(x) \mathrm{d} x\text{.}\)
Solution.
证 \(\quad \displaystyle \int_{a}^{a+T} f(x) \mathrm{d} x=\displaystyle \int_{a}^{0} f(x) \mathrm{d} x+\displaystyle \int_{0}^{\mathrm{T}} f(x) \mathrm{d} x+\displaystyle \int_{T}^{a+T} f(x) \mathrm{d} x\text{,}\)对 \(\displaystyle \int_{T}^{a+T} f(x) \mathrm{d} x\text{,}\) 令 \(x=t+T\text{,}\) 于是
\begin{equation*}
\displaystyle \int_{T}^{a+T} f(x) \mathrm{d} x=\displaystyle \int_{0}^{a} f(t+T) \mathrm{d} t=\displaystyle \int_{0}^{a} f(t) \mathrm{d} t=\displaystyle \int_{0}^{a} f(x) \mathrm{d} x=-\displaystyle \int_{a}^{0} f(x) \mathrm{d} x,
\end{equation*}
故有
\begin{equation*}
\displaystyle \int_{a}^{a+T} f(x) \mathrm{d} x=\displaystyle \int_{0}^{T} f(x) \mathrm{d} x .
\end{equation*}
注 (1) 定积分的换元积分法实际上是不定积分中的第二换元积分法在定积分中的运用. (2)定积分的上、下限 \(a, b\) 是被积函数 \(f(x)\) 的取值范围. 在作变量代换时, 由于自变量改变了,所以必须给出新变量的取值范围,这是定积分的换元法和不定积分的换元法区别之一. (3)在不定积分中通过变量代换求出原函数后,变量必须代回 (因为找的是被积函数的原函数). 但定积分的运算中就不需代回变量, 这是因为定积分是一个 “数值”,无论用什么方法, 只要将这个值求出即可.
Example 6.4.4.
例 3 求定积分 \(\displaystyle \int_{0}^{\pi} \sqrt{\sin ^{3} x-\sin ^{5} x} \mathrm{~d} x\text{.}\)
Solution.
解 由于 \(\sqrt{\sin ^{3} x-\sin ^{5} x}=\sqrt{\sin ^{3} x\left(1-\sin ^{2} x\right)}=\sin ^{\frac{3}{2}} x|\cos x|\text{,}\)当 \(x \in\left[0, \frac{\pi}{2}\right]\) 时, \(|\cos x|=\cos x\text{;}\) 当 \(x \in\left[\frac{\pi}{2}, \pi\right]\) 时, \(|\cos x|=-\cos x\text{.}\)
于是 \(\displaystyle \int_{0}^{\pi} \sqrt{\sin ^{3} x-\sin ^{5} x} \mathrm{~d} x=\displaystyle \int_{0}^{\frac{\pi}{2}} \sin ^{\frac{3}{2}} x \cos x \mathrm{~d} x+\displaystyle \int_{\frac{\pi}{2}}^{\pi} \sin ^{\frac{3}{2}} x(-\cos x) \mathrm{d} x\)
\begin{equation*}
\begin{aligned}
& =\displaystyle \int_{0}^{\frac{\pi}{2}} \sin ^{\frac{3}{2}} x \mathrm{~d}(\sin x)-\displaystyle \int_{\frac{\pi}{2}}^{\pi} \sin ^{\frac{3}{2}} x \mathrm{~d}(\sin x) \\
& =\left[\frac{2}{5} \sin ^{\frac{5}{2}} x\right]_{0}^{\frac{\pi}{2}}-\left[\frac{2}{5} \sin ^{\frac{5}{2}} x\right]_{\frac{\pi}{2}}^{\pi}=\frac{2}{5}-\left(-\frac{2}{5}\right)=\frac{4}{5} .
\end{aligned}
\end{equation*}
Example 6.4.5.
例 4 证明 :
若 \(f(x)\) 在 \([-a, a]\) 上连续且为偶函数, 则 \(\displaystyle \int_{-a}^{a} f(x) \mathrm{d} x=2 \displaystyle \int_{0}^{a} f(x) \mathrm{d} x\text{;}\)
若 \(f(x)\) 在 \([-a, a]\) 上连续且为奇函数, 则 \(\displaystyle \int_{-a}^{a} f(x) \mathrm{d} x=0\text{.}\)
Solution.
证 因为 \(\displaystyle \int_{-a}^{a} f(x) \mathrm{d} x=\displaystyle \int_{-a}^{0} f(x) \mathrm{d} x+\displaystyle \int_{0}^{a} f(x) \mathrm{d} x\text{.}\) 对积分 \(\displaystyle \int_{-a}^{0} f(x) \mathrm{d} x\) 作替换 \(x=-t\text{,}\) 则得
\begin{equation*}
\displaystyle \int_{-a}^{0} f(x) \mathrm{d} x=-\displaystyle \int_{a}^{0} f(-t) \mathrm{d} t=\displaystyle \int_{0}^{a} f(-t) \mathrm{d} t=\displaystyle \int_{0}^{a} f(-x) \mathrm{d} x
\end{equation*}
于是
\(\displaystyle \int_{-a}^{a} f(x) \mathrm{d} x=\displaystyle \int_{0}^{a} f(-x) \mathrm{d} x+\displaystyle \int_{0}^{a} f(x) \mathrm{d} x=\displaystyle \int_{0}^{a}[f(-x)+f(x)] \mathrm{d} x . \quad(*)\)
若
\(f(x)\) 为偶函数,则
\(f(x)+f(-x)=2 f(x)\text{,}\) 从而
\begin{equation*}
\displaystyle \int_{-a}^{a} f(x) \mathrm{d} x=2 \displaystyle \int_{0}^{a} f(x) \mathrm{d} x .
\end{equation*}
若 \(f(x)\) 为奇函数,则 \(f(x)+f(-x)=0\text{,}\) 从而
\begin{equation*}
\displaystyle \int_{-a}^{a} f(x) \mathrm{d} x=0
\end{equation*}
这个结论从几何上看是十分明显的,因为奇函数的图像关于原点对称, 故它在区间 \([-a, 0]\) 与 \([0, a]\) 上的两个曲边梯形分别位于 \(x\) 轴的两侧且面积相等, 因此这两个面积的代数和为零. 而偶函数的图形关于 \(y\) 轴对称, 所以它在 \([-a, a]\) 上曲边梯形的面积自然应是 \([0, a]\) 上面积的两倍. 利用这个结论, 常可简化计算偶函数. 奇函数在关于原点对称的区间上的定积分, 特别是奇函数在对称区间上的积分等于 0 是很有用的结论.
Example 6.4.6.
例 5 设 \(f(x)\) 在积分区间上连续,求定积分 \(\displaystyle \int_{-a}^{a}[f(x)-f(-x)] \cos x \mathrm{~d} x\text{.}\)
Solution.
解 因为 \(\cos x\) 是偶函数, \(f(x)-f(-x)\) 是奇函数, 所以 \(\cos x[f(x)-f(-x)]\)也是奇函数,而积分区间 \([-a, a]\) 是以原点为中心的对称区间. 所以 \(\displaystyle \int_{-a}^{a}[f(x)-\) \(f(-x)] \cos x \mathrm{~d} x=0\text{.}\)
Example 6.4.7.
例 6 求定积分 \(\displaystyle \int_{-1}^{1}(|x|+\sin x) x^{2} \mathrm{~d} x\text{.}\)
Solution.
解 因为 \(|x| x^{2}\) 是偶函数, \(x^{2} \sin x\) 是奇函数,而积分区间 \([-1,1]\) 是以原点为中心的对称区间,所以
\begin{equation*}
\displaystyle \int_{-1}^{1}(|x|+\sin x) x^{2} \mathrm{~d} x=\displaystyle \int_{-1}^{1}|x| x^{2} \mathrm{~d} x=2 \displaystyle \int_{0}^{1} x^{3} \mathrm{~d} x=\frac{1}{2} .
\end{equation*}
Example 6.4.8.
例 7 求定积分 \(I=\displaystyle \int_{-2}^{2} \min \left\{x^{2}, \frac{1}{|x|}\right\} \mathrm{d} x\text{.}\)
Solution.
解 可以看出被积函数为偶函数.
\begin{equation*}
I=2 \displaystyle \int_{0}^{2} \min \left\{x^{2}, \frac{1}{x}\right\} \mathrm{d} x=2\left[\displaystyle \int_{0}^{1} x^{2} \mathrm{~d} x+\displaystyle \int_{1}^{2} \frac{1}{x} \mathrm{~d} x\right]=2\left(\frac{1}{3}+\ln 2\right) .
\end{equation*}
Example 6.4.9.
例 8 证明 \(\displaystyle \int_{0}^{a} f(x) \mathrm{d} x=\displaystyle \int_{0}^{\frac{a}{2}}[f(x)+f(a-x)] \mathrm{d} x\text{.}\)
Solution.
证 由定积分的性质 \(\displaystyle \int_{0}^{a} f(x) \mathrm{d} x=\displaystyle \int_{0}^{\frac{a}{2}} f(x) \mathrm{d} x+\displaystyle \int_{\frac{a}{2}}^{a} f(x) \mathrm{d} x\text{.}\)
在上式右端第二个积分中, 令 \(t=a-x\text{,}\) 当 \(x=\frac{a}{2}\) 时, \(t=\frac{a}{2}\text{;}\) 当 \(x=a\) 时, \(t=0\text{.}\)
所以
\begin{equation*}
\displaystyle \int_{\frac{a}{2}}^{a} f(x) \mathrm{d} x=-\displaystyle \int_{\frac{a}{2}}^{0} f(a-t) \mathrm{d} t=\displaystyle \int_{0}^{\frac{a}{2}} f(a-x) \mathrm{d} x .
\end{equation*}
故 \(\quad \displaystyle \int_{0}^{a} f(x) \mathrm{d} x=\displaystyle \int_{0}^{\frac{a}{2}} f(x) \mathrm{d} x+\displaystyle \int_{0}^{\frac{a}{2}} f(a-x) \mathrm{d} x=\displaystyle \int_{0}^{\frac{a}{2}}[f(x)+f(a-x)] \mathrm{d} x\text{.}\)
Example 6.4.10.
例 9 证明 \(\displaystyle \int_{0}^{a} x^{5} f\left(x^{3}\right) \mathrm{d} x=\frac{1}{3} \displaystyle \int_{0}^{a^{3}} x f(x) \mathrm{d} x\text{,}\) 其中 \(f(x)\) 是连续函数.
Solution.
证 令 \(x=\sqrt[3]{t}\text{,}\) 有 \(x^{3}=t, \mathrm{~d} t=3 x^{2} \mathrm{~d} x\text{,}\) 当 \(x=0\) 时, \(t=0\text{;}\) 当 \(x=a\) 时, \(t=a^{3}\text{.}\) 于是
\(\displaystyle \int_{0}^{a} x^{5} f\left(x^{3}\right) \mathrm{d} x=\displaystyle \int_{0}^{a^{3}} t^{\frac{5}{3}} f(t)\left(\frac{1}{3} t^{-\frac{2}{3}}\right) \mathrm{d} t=\frac{1}{3} \displaystyle \int_{0}^{a^{3}} t f(t) \mathrm{d} t=\frac{1}{3} \displaystyle \int_{0}^{a^{3}} x f(x) \mathrm{d} x\text{.}\)
注 以上证明方法都是应用适当的变量代换, 并根据定积分的值与被积函数和积分区间有关,而与积分变量的记号无关这一特性.
Example 6.4.11.
例 10 设函数 \(f(x)=\left\{\begin{array}{ll}x \mathrm{e}^{-x^{2}}, & x \geqslant 0, \\ \frac{1}{1+\cos x}, & -1<x<0,\end{array}\right.\) 计算 \(\displaystyle \int_{1}^{4} f(x-2) \mathrm{d} x\text{.}\)
Solution.
解 设 \(x-2=t\text{,}\) 则 \(\mathrm{d} x=\mathrm{d} t\text{,}\) 且当 \(x=1\) 时, \(t=-1\text{;}\) 当 \(x=4\) 时, \(t=2\text{.}\)
于是
\begin{equation*}
\begin{aligned}
\displaystyle \int_{1}^{4} f(x-2) \mathrm{d} x & =\displaystyle \int_{-1}^{2} f(t) \mathrm{d} t=\displaystyle \int_{-1}^{0} \frac{\mathrm{d} t}{1+\cos t}+\displaystyle \int_{0}^{2} t \mathrm{e}^{-t^{2}} \mathrm{~d} t \\
& =\left[\tan \frac{t}{2}\right]_{-1}^{0}-\left[\frac{1}{2} \mathrm{e}^{-t^{2}}\right]_{0}^{2}=\tan \frac{1}{2}-\frac{1}{2} \mathrm{e}^{-4}+\frac{1}{2} .
\end{aligned}
\end{equation*}
Example 6.4.12.
例 11 设 \(f(x)\) 在 \([a, b]\) 上连续, 且 \(f(x)>0, F(x)=\displaystyle \int_{a}^{x} f(t) \mathrm{d} t+\displaystyle \int_{b}^{x} \frac{\mathrm{d} t}{f(t)}\text{,}\) \(x \in[a, b]\text{,}\)证明 :
\(F^{\prime}(x) \geqslant 2\text{;}\)
方程 \(F(x)=0\) 在 \((a, b)\) 内有且仅有一个实根.
Solution.
证 (1) \(F^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left[\displaystyle \int_{a}^{x} f(t) \mathrm{d} t+\displaystyle \int_{b}^{x} \frac{1}{f(t)} \mathrm{d} t\right]=f(x)+\frac{1}{f(x)}\text{,}\)
又因为
\begin{equation*}
f(x)>0,
\end{equation*}
所以
\begin{equation*}
f(x)+\frac{1}{f(x)} \geqslant 2 \sqrt{f(x) \cdot \frac{1}{f(x)}}=2,
\end{equation*}
即
\begin{equation*}
F^{\prime}(x) \geqslant 2 \text {. }
\end{equation*}
(2)因为 \(F(x)\) 在 \([a, b]\) 上连续, 且 \(f(x)>0\text{.}\) 所以
\begin{equation*}
\begin{aligned}
& F(a)=\displaystyle \int_{a}^{a} f(x) \mathrm{d} x+\displaystyle \int_{b}^{a} \frac{1}{f(x)} \mathrm{d} x=\displaystyle \int_{b}^{a} \frac{1}{f(x)} \mathrm{d} x<0, \\
& F(b)=\displaystyle \int_{a}^{b} f(x) \mathrm{d} x+\displaystyle \int_{b}^{b} \frac{1}{f(x)} \mathrm{d} x=\displaystyle \int_{a}^{b} \frac{1}{f(x)} \mathrm{d} x>0 .
\end{aligned}
\end{equation*}
由零点定理, 存在 \(\xi \in(a, b)\) 使 \(F(\xi)=0\text{,}\) 故 \(F(x)=0\) 在 \((a, b)\) 内至少有一个实根.
又因为 \(F^{\prime}(x) \geqslant 2>0\text{,}\) 所以 \(F(x)\) 在 \([a, b]\) 上单调增加, 故 \(F(x)=0\) 在 \((a, b)\)内有且仅有一个实根.
Subsection 6.4.2 定积分的分部积分法
不定积分的分部积分法和定积分的分部积分法在计算方法上完全一样. 即设函数 \(u(x), v(x)\) 在区间 \([a, b]\) 上具有导数 \(u^{\prime}(x), v^{\prime}(x)\text{,}\) 则有
\begin{equation*}
(u v)^{\prime}=u^{\prime} v+u v^{\prime} .
\end{equation*}
分别求等式两端在 \([a, b]\) 上的定积分,得
\begin{equation*}
\displaystyle \int_{a}^{b}(u v)^{\prime} \mathrm{d} x=\displaystyle \int_{a}^{b} u^{\prime} v \mathrm{~d} x+\displaystyle \int_{a}^{b} u v^{\prime} \mathrm{d} x .
\end{equation*}
移项得
\begin{equation*}
\displaystyle \int_{a}^{b} u v^{\prime} \mathrm{d} x=[u v]_{a}^{b}-\displaystyle \int_{a}^{b} u^{\prime} v \mathrm{~d} x .
\end{equation*}
或简写为
\begin{equation*}
\displaystyle \int_{a}^{b} u d v=[u v]_{a}^{b}-\displaystyle \int_{a}^{b} v \mathrm{~d} u .
\end{equation*}
这就是定积分的分部积分公式. 注意 这个公式的每一项都带有积分限. 当具体使用分部积分法时, 原函数中已求出的部分应立即用积分上、下限代人, 这样可以简化计算过程.
Example 6.4.13.
例 12 计算 \(\displaystyle \int_{0}^{1} \arcsin x \mathrm{~d} x\text{.}\)
Solution.
解 \(\displaystyle \int_{0}^{1} \arcsin x \mathrm{~d} x=[x \arcsin x]_{0}^{1}-\displaystyle \int_{0}^{1} x \mathrm{~d}(\arcsin x)=\arcsin 1-\displaystyle \int_{0}^{1} \frac{x}{\sqrt{1-x^{2}}} \mathrm{~d} x\)
\begin{equation*}
=\frac{\pi}{2}+\left[\sqrt{1-x^{2}}\right]_{0}^{1}=\frac{\pi}{2}-1 .
\end{equation*}
Example 6.4.14.
例 13 计算 \(\displaystyle \int_{0}^{\sqrt{3}} \ln \left(x+\sqrt{1+x^{2}}\right) \mathrm{d} x\text{.}\)
Solution.
解 \(\displaystyle \int_{0}^{\sqrt{3}} \ln \left(x+\sqrt{1+x^{2}}\right) \mathrm{d} x=\left[x \ln \left(x+\sqrt{1+x^{2}}\right)\right]_{0}^{\sqrt{3}}-\displaystyle \int_{0}^{\sqrt{3}} \frac{x}{\sqrt{1+x^{2}}} \mathrm{~d} x\)
\begin{equation*}
\begin{aligned}
& =\sqrt{3} \ln (\sqrt{3}+2)-\left[\sqrt{1+x^{2}}\right]_{0}^{\sqrt{3}} \\
& =\sqrt{3} \ln (\sqrt{3}+2)-2+1=\sqrt{3} \ln (\sqrt{3}+2)-1 .
\end{aligned}
\end{equation*}
Example 6.4.15.
例 14 计算 \(\displaystyle \int_{0}^{1} \mathrm{e}^{\sqrt{x}} \mathrm{~d} x\text{.}\)
Solution.
解 令 \(\sqrt{x}=t\text{,}\) 则 \(x=t^{2}, \mathrm{~d} x=2 t \mathrm{~d} t\text{.}\) 且当 \(x=0\) 时, \(t=0\text{;}\) 当 \(x=1\) 时, \(t=1\text{.}\) 于是
\(\displaystyle \int_{0}^{1} \mathrm{e}^{\sqrt{x}} \mathrm{~d} x=2 \displaystyle \int_{0}^{1} t \mathrm{e}^{t} \mathrm{~d} t=2\left[t \mathrm{e}^{t}\right]_{0}^{1}-2 \displaystyle \int_{0}^{1} \mathrm{e}^{t} \mathrm{~d} t=2\left(\mathrm{e}-\left[\mathrm{e}^{t}\right]_{0}^{1}\right)=2[\mathrm{e}-(\mathrm{e}-1)]=2\text{.}\)
Example 6.4.16.
例 15 设 \(I_{n}=\displaystyle \int_{0}^{\frac{\pi}{2}} \sin ^{n} x \mathrm{~d} x, J_{n}=\displaystyle \int_{0}^{\frac{\pi}{2}} \cos ^{n} x \mathrm{~d} x, n \in \mathbf{N}\text{,}\) 证明 \(I_{n}=J_{n}\text{,}\) 并计算 \(I_{n}\text{.}\)
Solution.
证 设 \(x=\frac{\pi}{2}-y\text{,}\)则 \(\mathrm{d} x=-\mathrm{d} y\text{.}\) 于是
\begin{equation*}
J_{n}=\displaystyle \int_{0}^{\frac{\pi}{2}} \cos ^{n} x \mathrm{~d} x=\displaystyle \int_{\frac{\pi}{2}}^{0} \cos ^{n}\left(\frac{\pi}{2}-y\right)(-\mathrm{d} y)=\displaystyle \int_{0}^{\frac{\pi}{2}} \sin ^{n} y \mathrm{~d} y=I_{n} .
\end{equation*}
下面计算
\begin{equation*}
\begin{aligned}
I_{n} & =\displaystyle \int_{0}^{\frac{\pi}{2}} \sin ^{n} x \mathrm{~d} x=\displaystyle \int_{0}^{\frac{\pi}{2}} \sin ^{n-1} x \mathrm{~d}(-\cos x) \\
& =\left[-\sin ^{n-1} x \cos x\right]_{0}^{\frac{\pi}{2}}+\displaystyle \int_{0}^{\frac{\pi}{2}} \cos x \mathrm{~d}\left(\sin ^{n-1} x\right) \\
& =(n-1) \displaystyle \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x \cos ^{2} x \mathrm{~d} x \\
& =(n-1) \displaystyle \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x\left(1-\sin ^{2} x\right) \mathrm{d} x \\
& =(n-1) \displaystyle \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x \mathrm{~d} x-(n-1) \displaystyle \int_{0}^{\frac{\pi}{2}} \sin ^{n} x \mathrm{~d} x \\
& =(n-1) I_{n-2}-(n-1) I_{n},
\end{aligned}
\end{equation*}
于是得到一个递推公式 \(I_{n}=\frac{n-1}{n} I_{n-2}\text{.}\)
当 \(n\) 为偶数, 设 \(n=2 k\left(k \in \mathbf{N}_{+}\right)\text{,}\) 有
\begin{equation*}
I_{2 k}=\frac{2 k-1}{2 k} \cdot \frac{2 k-3}{2 k-2} \cdot \frac{2 k-5}{2 k-4} \cdot \cdots \cdot \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} I_{0} ;
\end{equation*}
当 \(n\) 为奇数, 设 \(n=2 k+1\left(k \in \mathbf{N}_{+}\right)\text{,}\) 有
\begin{equation*}
\begin{gathered}
I_{2 k+1}=\frac{2 k}{2 k+1} \cdot \frac{2 k-2}{2 k-1} \cdot \frac{2 k-4}{2 k-3} \cdot \cdots \cdot \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} I_{1}, \\
I_{0}=\displaystyle \int_{0}^{\frac{\pi}{2}} \mathrm{~d} x=\frac{\pi}{2}, I_{1}=\displaystyle \int_{0}^{\frac{\pi}{2}} \sin x \mathrm{~d} x=1,
\end{gathered}
\end{equation*}
而
于是得 \(\displaystyle \int_{0}^{\frac{\pi}{2}} \sin ^{n} x \mathrm{~d} x=\displaystyle \int_{0}^{\frac{\pi}{2}} \cos ^{n} x \mathrm{~d} x=\left\{\begin{array}{l}\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \cdots \frac{1}{2} \cdot \frac{\pi}{2}, \text { 当 } n \text { 为偶数时, } \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \cdots \frac{2}{3} \cdot 1, \text { 当 } n \text { 为奇数时. }\end{array}\right.\)
这个结果在计算中经常用到, 应加以注意.
Example 6.4.17.
例 16 计算 \(\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} \sin ^{6} x \mathrm{~d} x\text{.}\)
Solution.
\begin{equation*}
\begin{aligned}
\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} \sin ^{6} x \mathrm{~d} x & =\displaystyle \int_{0}^{\frac{\pi}{2}}\left(\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}}+\frac{\mathrm{e}^{-x}}{1+\mathrm{e}^{-x}}\right) \sin ^{6} x \mathrm{~d} x \\
& =\displaystyle \int_{0}^{\frac{\pi}{2}} \sin ^{6} x \mathrm{~d} x=\frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}=\frac{15}{96} \pi .
\end{aligned}
\end{equation*}
Example 6.4.18.
例 17 设 \(f^{\prime}(x)\) 在 \((-\infty,+\infty)\) 内连续, \(F(x)=\displaystyle \int_{0}^{x} f(t) f^{\prime}(2 a-t) \mathrm{d} t\text{,}\) 证明:
\begin{equation*}
F(2 a)-2 F(a)=[f(a)]^{2}-f(0) f(2 a) .
\end{equation*}
Solution.
证 \(\quad F(2 a)-2 F(a)=\displaystyle \int_{0}^{2 a} f(t) f^{\prime}(2 a-t) \mathrm{d} t-2 \displaystyle \int_{0}^{a} f(t) f^{\prime}(2 a-t) \mathrm{d} t\)
\begin{equation*}
=\displaystyle \int_{a}^{2 a} f(t) f^{\prime}(2 a-t) \mathrm{d} t-\displaystyle \int_{0}^{a} f(t) f^{\prime}(2 a-t) \mathrm{d} t,
\end{equation*}
而积分 \(\displaystyle \int_{a}^{2 a} f(t) f^{\prime}(2 a-t) \mathrm{d} t=-\displaystyle \int_{a}^{2 a} f(t) \mathrm{d} f(2 a-t)\)
\begin{equation*}
\begin{aligned}
& =-[f(t) f(2 a-t)]_{a}^{2 a}+\displaystyle \int_{a}^{2 a} f(2 a-t) f^{\prime}(t) \mathrm{d} t \\
& =[f(a)]^{2}-f(0) f(2 a)+\displaystyle \int_{a}^{2 a} f(2 a-t) f^{\prime}(t) \mathrm{d} t .
\end{aligned}
\end{equation*}
又因为 \(\displaystyle \int_{a}^{2 a} f(2 a-t) f^{\prime}(t) \mathrm{d} t \stackrel{t=2 a-x}{=}-\displaystyle \int_{a}^{0} f(x) f^{\prime}(2 a-x) \mathrm{d} x\text{,}\)
所以有
\begin{equation*}
F(2 a)-2 F(a)=[f(a)]^{2}-f(0) f(2 a) .
\end{equation*}