证 如图 6-4 所示,对任意 \(x \in(a, b)\text{,}\) 设 \(x\) 获得增量 \(\Delta x\text{,}\) 让 \(|\Delta x|\) 足够小,使 \(x+\Delta x \in(a, b)\text{,}\) 则
\begin{equation*}
\begin{aligned}
\Delta \Phi(x) & =\Phi(x+\Delta x)-\Phi(x)=\displaystyle \int_{a}^{x+\Delta x} f(t) \mathrm{d} t-\displaystyle \int_{a}^{x} f(t) \mathrm{d} t \\
& =\displaystyle \int_{a}^{x} f(t) \mathrm{d} t+\displaystyle \int_{x}^{x+\Delta x} f(t) \mathrm{d} t-\displaystyle \int_{a}^{x} f(t) \mathrm{d} t=\displaystyle \int_{x}^{x+\Delta x} f(t) \mathrm{d} t .
\end{aligned}
\end{equation*}
由积分中值定理得到 \(\displaystyle \int_{x}^{x+\Delta x} f(t) \mathrm{d} t=f(\xi) \Delta x\text{,}\) 所以 \(\Delta \Phi(x)=f(\xi) \Delta x\text{,}\)其中 \(\xi\) 在 \(x\) 与 \(x+\Delta x\) 之间, 把上式两端各除以 \(\Delta x\text{,}\) 得函数增量与自变量增量比值 \(\frac{\Delta \Phi(x)}{\Delta x}=f(\xi)\text{.}\) 由于 \(f(x)\) 在 \([a, b]\) 上连续, 当 \(\Delta x \rightarrow 0\)时, 有 \(\xi \rightarrow x\text{,}\) 故
\begin{equation*}
\Phi^{\prime}(x)=\lim\limits_{\Delta x \rightarrow 0} \frac{\Phi(x+\Delta x)-\Phi(x)}{\Delta x}=\lim\limits_{\xi \rightarrow x} f(\xi)=f(x) .
\end{equation*}
即 \(\Phi(x)=\displaystyle \int_{a}^{x} f(t) \mathrm{d} t\) 在 \([a, b]\) 上可导且 \(\Phi^{\prime}(x)=f(x)\text{.}\)
若 \(x=a\text{,}\)取 \(\Delta x>0\text{,}\)则同理可证, \(\Phi_{+}^{\prime}(a)=f(a)\text{;}\) 若 \(x=b\text{,}\) 取 \(\Delta x<0\text{,}\)则同理可证, \(\Phi_{-}^{\prime}(b)=f(b)\text{.}\)